
International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A Methodology for Validation of OCL
Constraints Using Coloured Petri Nets

Aakanksha Sharaff

Abstract— Unified Modelling Language is the standard language for modelling the software architecture of a large scale application
system. It makes a blueprint for the construction of software design. The different UML diagrams such as use case diagrams, activity
diagrams, class diagrams, state chart diagrams, sequence diagrams, collaboration diagrams etc. prove to be quite helpful in System
Analysis and Design. The most important diagram i.e., UML class diagram addresses the static structure of the system. It defines the
attributes and behavior (operations) of the class. UML class diagram provides the structural behavior of the system but at the same time
precision and details are also required for proper System Analysis and Design. In order to achieve this precision and detail, constraints
needs to be described. These constraints are invariants which are described by Object Constraint Language (OCL). OCL is a formal
modelling language which is used with UML class diagram to model a system with a high abstraction level. These UML model associated
with OCL needs to be verified to check whether it meets the user requirement or not. So, Coloured Petri Net (CPN) is used for model
checking. CPN checks the dynamic behavior of the application. This paper develops a transformation approach to achieve precision and
detail while modelling the behavior of the system. In order to describe this process, an example of Automatic Teller Machine (ATM) is
illustrated.

Index Terms— Class Diagram, Coloured Petri Nets (CPN), Model Checking, Object Constraint Language (OCL), Personal Identification
Number (PIN), Unified Modelling Language (UML).

—————————— ——————————

1 INTRODUCTION

A model is an abstraction of something for the purpose of
understanding it before building it [1]. Many kinds of models for
various purposes are designed before developing the model.
Unified Modelling Language provides a standard notation for
developing these models. UML diagrams makes blueprint for the
development of the system which simplifies the complex process
involved in the system. UML diagrams provide both the
structural views and behavioral views of the system. There are
different UML diagrams such as use case diagrams, activity
diagrams, class diagrams, state chart diagrams, sequence
diagrams, collaboration diagrams, deployment diagrams etc.
UML sequence diagram and collaboration diagram helps in
designing real-time system. Out of these several UML diagrams,
class diagram plays a very important role in developing the
model. It helps in designing the static structure [18] of the
system. UML class diagrams define the attributes and behavior
(operations) of the class in the system. UML class diagram lacks
in providing precision and unambiguous detail which are the
relevant aspects of the specification. In order to achieve these
aspects of specification, there is a need to describe the
constraints. These constraints can be described using natural
language but it still lacks unambiguous specification of the
system. So, formal languages have been developed to write
unambiguous specification of the system. Hence, Object
Constraint Language (OCL) comes to fill this gap. OCL [3] is
easy to write and is a pure expression language. OCL describes
the constraints and these constraints can be specified as
invariants, precondition and post-condition. OCL is not a
programming language as a result it does not depict the program
flow or flow of execution. It is a modelling language but not
directly executable. To make UML-OCL model executable and
to check whether it conforms the user requirement or not
Coloured Petri Net (CPN) is used. CPN implements the dynamic

behavior of the system and is represented as a set of state and
transition diagrams. CPN is a formal modelling language that
models the graphical representation of the system and addresses
the behavioral aspects of the system.

 The main aim of this paper is to develop an
unambiguous and precise UML-OCL model which can be
executable and free from ambiguity. The goal of using CPN is to
check the model as to whether it meets the customer requirement
or not. To meet the customer requirements, the designer should
understand the problem, reduce the potential errors, if any,
caused by ambiguous requirement. The potential errors would be
removed by decomposing the user requirement, specifying and
modelling the system according to the functional requirement of
the system. Hence, OCL-CPN combines to provide a generalized
model of the system which is free from ambiguity.

 The remaining portion of the paper is organized in the
following manner. Section II describes the related concepts
UML, Object Constraint Language, Coloured Petri Nets and CPN
tool. Section III presents the Proposed Work. Section IV gives
the CPN model of the proposed work along with its validation.
Section V gives the conclusion and future work.

2 RELATED CONCEPTS
Unified Modelling Language is used in this paper to analyze and
design the model, OCL is used to develop the model which is
free from ambiguity and to check the model whether it conforms
the user requirement or not, Coloured Petri Nets is used.

2.1 Unified Modelling Language
UML model is a simplification of reality [2]. We build models
to better understand the system which we are developing. The

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

UML models helps to visualize the system, specify the struc-
ture and behavior of the system, gives the template to con-
struct the system and document the artifacts of the system [2].
The UML offers several kinds of diagrams, dedicated to de-
scribe different aspects of a system, such as structure, interac-
tion, state based behaviour or deployment [2]. The UML in-
corporates a language called Object Constraint Language that
can be used for navigation [1].

2.2 Object Constraint Language
The Object Constraint Language (OCL) is a textual specifica-
tion language, designed especially for the use in the context of
diagrammatic specification languages such as the UML [3]. It
defines preconditions, post-conditions and invariants as con-
straints but it also requires the elements defined in UML dia-
grams such as classes, attributes, methods etc. UML-OCL dia-
gram allows preconditions and post-conditions to specify the
methods (operations) of the classes. Its main purpose is to
make UML models more precise by providing a constraint
language [4]. For example, class diagrams can be precisely
defined using OCL. The Object Constraint Language [3] was
proposed as a way to bring additional precision to analyse or
design models defined with the Unified Modeling Language.
OCL brings precision to modeling activities and offers a num-
ber of potential benefits [5, 6, 7]. The invariants are specified on
class diagrams which models the static structure of a system, in
terms of classes and relationships between classes [8]. A class de-
scribes a set of objects encapsulating attributes and methods [2]. An
association provides the links between the class instances.

2.3 Coloured Petri Nets
Coloured Petri Nets [12] provide a graphical modeling lan-
guage or notation well suited for analysing, modelling and
simulating the systems. Coloured Petri Net consists of places
(denoted as circles or ovals), transitions (denoted as rectan-
gles) and arcs (denoted as arrows) that connect a place to a
transition or a transition to a place [11]. Places may have to-
kens and firing of a transition removes tokens from its input
place and adds tokens to its output place. The firing of a tran-
sition is an abstraction of occurrence of an event and move-
ment of tokens describes state change. Coloured Petri Nets
(CPNs) are extensions of Petri Nets [9] that allow modelling of
models in a hierarchical manner. The Petri Net core provides
the primitives for process interaction, while the programming
language provides the primitives [17] for the definition of data
types and the manipulations of data values. CPN models are
validated by simulation and simulations are done by CPN
tool.

2.4 CPN Tool
The tool which is used for Coloured Petri Net is CPN tool [14].
It provides a visual, graphical modelling of the system. It veri-
fies all the constraints or conditions which are necessary to be
checked for deployment of better software. CPN Tool is a tool
for editing, simulating and analysing untimed and timed, hi-
erarchical Coloured Petri nets [10].

3 PROPOSED WORK
The system developer must analyze the different views of the
system to build complex systems. Models should be built by
using precise notations and should be verified to satisfy the
requirements of the system, and then adding detail gradually
to transform the models using validation tool. The main aim of
this paper is to analyze and design the models which should
be unambiguous, precise and verifiable. In this paper, the
UML models are built by using an analytical tool i.e., Rational
Rose, to give a precise meaning to the UML model and to re-
move the ambiguity present in the model OCL is used. After
precisely developing the model, CPN is used to check the
model and make it executable as the UML-OCL model is not
directly executable. To illustrate the process of model check-
ing, an example of Automatic Teller Machine is considered.
Fig 1 shows the overall approach used in this paper.

 CPN

 → UML-OCL

 UML-OCL-CPN
Fig. 1 Overall Approach

3.1 UML Diagrams

Use case diagram of ATM

UML diagrams are used to model the user requirements. The
use case diagram [2] consists of use cases and actors involved
in the system. A use case illustrates a sequence of actions that
provide measurable value to an actor [2]. An actor represents a
person, organization, or external system that plays different
role in one or more interactions with the system [8]. The use
case diagram of ATM is shown in Fig 2.

Class Diagram of ATM

The class diagram is the basic building block of UML. It de-
scribes the structural view of the system by representing the
classes, its attributes, its methods and the association among
the classes.

In this paper ATM, Bank, Customer are taken as clas-
ses. There are various attributes and methods correspond to
each class. Here our main emphasis is on ATM class. ATM is
having “name of ATM and location of ATM” as attributes and
“withdraw(), balance enquiry(), mini statement() etc.” as

OCL

UML

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

methods. The class diagram of ATM is shown in Fig 3.

3.2 APPLYING OCL CONSTRAINTS to UML CLASS
DIAGRAM

OCL [5] is a formal language used to represent constraints
which is easy to read and write. It is used to describe precon-
ditions and post-conditions on operations and methods. Fig-
ure 4 shows the Class Diagram associated with UML class
diagram.
Context and Self:
OCL expressions are written in the context of an instance of a
specific type.
e.g. context Customer
Reserved word self is used to refer to the contextual instance
[16]. If the context is Customer, self refers to an instance of
Customer.
Invariants: Invariants determine a constraint that must be true
for all instances of a type.
Pre-condition: Constraint assumed to be true before the oper-
ation is executed [16].
Post-condition: Constraint satisfied after the operation is exe-
cuted [16].

Constraints considered in ATM in this paper:
Preconditions and post-conditions associated with operation
withdraw of ATM class is as follows:

context ATM::withdraw(): String
Precondition:
1. PIN number should be valid.
2. Balance should be greater than 500.
3. Amount to be withdrawn should be greater than 100.
Post-condition:
Result - Thank You message and printed receipt, after success-

Fig. 2 Use Case Diagram of ATM

Fig. 3 Class Diagram of ATM

Fig. 4 Class Diagram associated with OCL

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ful transaction.
Result represents the result of the operation, if any. Type of
Result is the result type of the operation [16] (String in the ex-
ample).

4 CPN MODEL
In this paper, we propose a UML-OCL-CPN model that pro-
vides an executable and unambiguous UML model. UML
models provide a precise and detailed design of the system.
Coloured Petri Net is applied on UML-OCL model to make
the model executable as well as to show the dynamic nature of
the model. In this paper, UML class diagram is adopted as our
primary notation for modelling the behaviour and then CPN
tool is used to verify and simulate the results. The CPN model
of ATM is shown in Fig 5.

Fig. 5 shows the main page of validation process. In the CPN
model, PIN number, amount to be withdrawn are taken as
input. Whenever we go to ATM firstly we insert the card, if
the card is of another bank then the consortium will check the
card whether it is of authorized bank or not. After checking
the card, it will check the PIN number which is considered as
first OCL constraint. If the user is not authorized or its PIN
number is not valid then it gives a message “NOT AUTHOR-
IZED” and again asks for PIN number, this will continue upto
three times. Within three times, if the user will not be able to
give valid PIN number then transaction will be failed and the
CPN model will show “INVALID TRANSACTION”. This
process is shown in Fig. 6.

If the user gives correct PIN then the user enters the
amount to be withdrawn, this amount should be less than the
total amount available in the account. This is considered as
second OCL constraint. If the amount to be withdrawn is

greater than the total balance in the account then the ATM will
display “NOT SUFFICIENT AMOUNT”. This process is
shown in Fig. 7.

If second constraint is true, then it checks the third constraint
whether the total amount left in the account is greater than
minimum permissible amount i.e., 500 or not. If is greater than
500 then it executes completely and gives a printed receipt
otherwise it will display an “INVALID TRANSACTION”
message. This process is shown in Fig. 8.

Fig.6. Validating OCL first constraint

Fig.5. CPN model of ATM

Fig.7. Validating OCL second constraint

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4.1 STATE SPACE DIAGRAM
State Space Diagram is generated by using CPN tool. CPN
Tools combine advanced interaction techniques into a con-
sistent interface for editing, simulating, and analysing CPN
[11,12]. CPN Tools contains facilities for generating and ana-
lysing full and partial state spaces for CP-nets. The state space
diagram of ATM generated through CPN tool is shown in Fig.
9.

4.2 STATE SPACE REPORT
The state space report is generated by using CPN tool [14]. It
contains information about standard behavioural properties
for CPNs. These behavioural properties give statistical infor-
mation, bounded-ness properties, home and liveliness and
fairness properties for transition.

CPN Tools state space report for:
/cygdrive/C/Users/aaka/Desktop/atm.cpn
Report generated: Fri Mar 23 16:44:19 2012

 Statistics
--
 State Space
 Nodes: 14
 Arcs: 14
 Secs: 0
 Status: Full

 Scc Graph
 Nodes: 14
 Arcs: 14
 Secs: 0

 Boundedness Properties
--
 Best Integer Bounds
 Upper Lower
 atm'A 1 1 0
 atm'Amount 1 1 0
 atm'B 1 1 0
 atm'C 1 1 0
 atm'D 1 1 0
 atm'E 1 1 0
 atm'F 1 1 0
 atm'G 1 1 0
 atm'H 1 1 0
 atm'I 1 1 0
 atm'J 1 1 0
 atm'K 1 1 0
 atm'L 1 1 0
 atm'PIN_Number 1 1 0

 Best Upper Multi-set Bounds
 atm'A 1 1`("11",150,800)
 atm'Amount 1 1`("11",150,800)
 atm'B 1 1`("11",150,800)
 atm'C 1 1`("11",150,800)
 atm'D 1 1`("11",150,800)
 atm'E 1 1`("11",150,800)
 atm'F 1 1`("11",150,800)
 atm'G 1 1`("11",150,650)
 atm'H 1 1`("11",150,650)
 atm'I 1 1`("11",150,650)
 atm'J 1 1`("11",150,650)
 atm'K 1 1`("11",150,650)
 atm'L 1 1`("11",150,650)
 atm'PIN_Number 1 1`("11",150,800)

 Best Lower Multi-set Bounds
 atm'A 1 empty
 atm'Amount 1 empty
 atm'B 1 empty
 atm'C 1 empty
 atm'D 1 empty

Fig.8. Validating OCL third constraint

Fig.9. State Space Diagram of ATM

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 atm'E 1 empty
 atm'F 1 empty
 atm'G 1 empty
 atm'H 1 empty
 atm'I 1 empty
 atm'J 1 empty
 atm'K 1 empty
 atm'L 1 empty
 atm'PIN_Number 1 empty

 Home Properties
--
 Home Markings
 [14]
 Liveness Properties
--
 Dead Markings
 [14]
 Dead Transition Instances
 atm'Auxiliary 1

 Live Transition Instances
 None

 Fairness Properties
--

 No infinite occurrence sequences.

5 CONCLUSIONS
This paper provides a transformation approach of UML-OCL-
CPN to develop a UML model which is highly precise and free
from ambiguity. In order to achieve unambiguous model of
the system, OCL has been used. These OCL constraints specify
the invariant, precondition and post-condition on the attrib-
utes and methods of the classes. While applying OCL con-
straints, UML associated with OCL model is developed which
shows only static structure of the system. To make it executa-
ble, Coloured Petri Net is used which shows the dynamic be-
havior of the system. Hence, this approach provides an exe-
cutable UML model which is highly precise and unambigu-
ous.
 The future scope of this paper is to validate OCL con-
straints on overall Banking Information System using CPN
modelling concept.

.

REFERENCES
[1] Michael R. Blaha, James R. Rambaugh, “Object-Oriented Modelling and

Design with UMLTM,” Pearson Education, Inc and Dorling Kindersley Publishing,
Inc, 2005.

[2] Rambaugh J., G. Booch, and I. Jacobson, “The Unified Modelling
Language,” Reference Manual, Reading MA: Addison Wesley, 1999.

[3] Ali Hamie, John Howse and Stuart Kent, “Interpreting the object
Constraint Language,” Inc. Proc. Of 1998 Asia Pacific Software Engi-
neering Conference, pp.288-295, 1998.

[4] L. C. Briand, Y. Labiche, H. D. Yan, M. Di Penta, “A Controlled Ex-
periment on the Impact of the Object Constraint Language in UML-
based Maintainence,” In Proc. Of the 20th IEEE Internatiional Conference
on Software Maintainence (ICSM’04), 2004.

[5] L. C. Briand, Y. Labiche and H. Sun, “Investigating the Use of Analy-
sis Contracts to Improve the Testability of Object-Oriented Code,”
Software Practice and Experience, vol. 33, no. 7, pp. 637-672, 2003.

[6] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer and A. Wills,
“Object Modelling with the OCL, The Rationale behind the Object
Constraint Language,” The Amsterdam Manifesto on OCL, in T. Clark
and J. Warmer Eds., Springer Verlag, pp. 115-149, 2002.

[7] A. Kleppe, J. Warmer and W. Bast, “MDA Explained- The Model
Driven Architecture: Practice and Promise,” Addison Wesley, 2003.

[8] Thouraya Bouabana- Tebibel, ”Roles at the Basis of UML Valida-
tion,” Journal of Computing and Information Technology- CIT 15, pp.
171-183, 2007, doi:10.2498/cit.1000882.

[9] Tadao Murata, “Petri Nets: Properties, Analysis and Applications,”
Proc. Of the IEEE, vol. 77, no. 4, April 1989.

[10] Kurt Jensen, “An Introduction to the Practical Use of Coloured Petri
Nets,” Springer-Verlag, 1996.

[11] Jensen, Kurt, “Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use,” vol. 1, Basic Concepts. Monographs in Theoretical
Computer Science, Berlin, Germany: Springer- Verlag, 1997.

[12] Kristensen, L. M., Christensen, S., Jensen, K., “The practitioners guide
to Colored Petri Nets,” International Journal on Software Tools for
Technology Transfer, 1998.

[13] Mark Richers and Martin Gogolla, “On formalizing the UML Object
Constraint Language OCL,” In Proc. Of 17th Int. Conf. Conceptual Mod-
elling (ER’98), Springer, Berlin, LNCS vol. 15, pp. 449-464, 1998.

[14] Design/CPN. Online: http://www.daimi.au.dk/designCPN/.
[15] OMG. UML 2.0 OCL Final Adopted Specification. OMG Document

ptc/03-10-1, October 2003, Online: http://www.omg.org/cgi-
bin/doc?ptc/2003-10-14.

[16] Jos Warmer and Anneke Kleppe, “The Object Constraint Language:
Precise Modelling with UML,” Addison Wesley, 1999.

[17] Vijay Gehlot and Anush Hayrapetyan, “Systems modeling and anal-
ysis using Coloured Petri Nets: a tutorial introduction and practical
applications,” ACM-SE 45: In Proc. Of the 45th annual southeast re-
gional conference, 2007.

[18] G. Booch, J. Rambaugh, and I. Jacobson, “The Unified Modelling
Language User Guide,” Addison Wesley, 1999.

